Exercise 2

Use power series to solve the differential equation.

$$
y^{\prime}=x y
$$

Solution

$x=0$ is an ordinary point, so the ODE has a power series solution centered here.

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Differentiate the series with respect to x.

$$
y^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
$$

Substitute these formulas into the ODE.

$$
\sum_{n=1}^{\infty} n a_{n} x^{n-1}=x \sum_{n=0}^{\infty} a_{n} x^{n}
$$

Bring x inside the summand.

$$
\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty} a_{n} x^{n+1}
$$

Make the substitution $n=k+2$ in the series on the left and the substitution $n=k$ in the series on the right.

$$
\sum_{k+2=1}^{\infty}(k+2) a_{k+2} x^{(k+2)-1}=\sum_{k=0}^{\infty} a_{k} x^{k+1}
$$

Simplify the sum on the left.

$$
\sum_{k=-1}^{\infty}(k+2) a_{k+2} x^{k+1}=\sum_{k=0}^{\infty} a_{k} x^{k+1}
$$

Write out the first term on the left.

$$
(-1+2) a_{-1+2} x^{-1+1}+\sum_{k=0}^{\infty}(k+2) a_{k+2} x^{k+1}=\sum_{k=0}^{\infty} a_{k} x^{k+1}
$$

Combine the series on the left side.

$$
a_{1}+\sum_{k=0}^{\infty}\left[(k+2) a_{k+2}-a_{k}\right] x^{k+1}=0
$$

In order for the left side to be zero, both a_{1} and the quantity in square brackets must be zero.

$$
(k+2) a_{k+2}-a_{k}=0
$$

Solve for a_{k+2}.

$$
a_{k+2}=\frac{1}{k+2} a_{k} \quad a_{1}=0
$$

In order to determine a_{k}, plug in values for k and try to find a pattern.

$$
\begin{array}{ll}
k=0: & a_{2}=\frac{1}{0+2} a_{0}=\frac{1}{2} a_{0} \\
k=1: & a_{3}=\frac{1}{1+2} a_{1}=0 \\
k=2: & a_{4}=\frac{1}{2+2} a_{2}=\frac{1}{4}\left(\frac{1}{2} a_{0}\right)=\frac{1 \cdot 1}{4 \cdot 2} a_{0} \\
k=3: & a_{5}=\frac{1}{3+2} a_{3}=0 \\
k=2: & a_{6}=\frac{1}{4+2} a_{4}=\frac{1}{6}\left(\frac{1 \cdot 1}{4 \cdot 2} a_{0}\right)=\frac{1 \cdot 1 \cdot 1}{6 \cdot 4 \cdot 2} a_{0}
\end{array}
$$

The general formula for the even subscripts is

$$
a_{2 m}=\frac{1}{(2 m)!!} a_{0}=\frac{1}{2^{m} m!} a_{0},
$$

and the general formula for the odd subscripts is

$$
a_{2 m+1}=0 .
$$

Therefore, the general solution is

$$
\begin{aligned}
y(x) & =\sum_{m=0}^{\infty} a_{m} x^{m} \\
& =\sum_{m=0}^{\infty} a_{2 m} x^{2 m}+\sum_{m=0}^{\infty} a_{2 m+1} x^{2 m+1} \\
& =\sum_{m=0}^{\infty} \frac{1}{2^{m} m!} a_{0} x^{2 m}+\sum_{m=0}^{\infty}(0) x^{2 m+1} \\
& =a_{0} \sum_{m=0}^{\infty} \frac{x^{2 m}}{2^{m} m!} \\
& =a_{0} \sum_{m=0}^{\infty} \frac{\left(\frac{x^{2}}{2}\right)^{m}}{m!} \\
& =a_{0} e^{x^{2} / 2},
\end{aligned}
$$

where a_{0} is an arbitrary constant.

